(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0', y, z) → max(y, z)
f(x, 0', z) → max(x, z)
f(x, y, 0') → max(x, y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0', y, z) → max(y, z)
f(x, 0', z) → max(x, z)
f(x, y, 0') → max(x, y)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
fThey will be analysed ascendingly in the following order:
min < f
max < f
(8) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y),
s(
z)) →
f(
max(
s(
x),
max(
s(
y),
s(
z))),
p(
min(
s(
x),
max(
s(
y),
s(
z)))),
min(
s(
x),
min(
s(
y),
s(
z))))
f(
0',
y,
z) →
max(
y,
z)
f(
x,
0',
z) →
max(
x,
z)
f(
x,
y,
0') →
max(
x,
y)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
min, max, f
They will be analysed ascendingly in the following order:
min < f
max < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
min(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y),
s(
z)) →
f(
max(
s(
x),
max(
s(
y),
s(
z))),
p(
min(
s(
x),
max(
s(
y),
s(
z)))),
min(
s(
x),
min(
s(
y),
s(
z))))
f(
0',
y,
z) →
max(
y,
z)
f(
x,
0',
z) →
max(
x,
z)
f(
x,
y,
0') →
max(
x,
y)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
max, f
They will be analysed ascendingly in the following order:
max < f
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s2_0(
n312_0),
gen_0':s2_0(
n312_0)) →
gen_0':s2_0(
n312_0), rt ∈ Ω(1 + n312
0)
Induction Base:
max(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
max(gen_0':s2_0(+(n312_0, 1)), gen_0':s2_0(+(n312_0, 1))) →RΩ(1)
s(max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0))) →IH
s(gen_0':s2_0(c313_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y),
s(
z)) →
f(
max(
s(
x),
max(
s(
y),
s(
z))),
p(
min(
s(
x),
max(
s(
y),
s(
z)))),
min(
s(
x),
min(
s(
y),
s(
z))))
f(
0',
y,
z) →
max(
y,
z)
f(
x,
0',
z) →
max(
x,
z)
f(
x,
y,
0') →
max(
x,
y)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(16) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y),
s(
z)) →
f(
max(
s(
x),
max(
s(
y),
s(
z))),
p(
min(
s(
x),
max(
s(
y),
s(
z)))),
min(
s(
x),
min(
s(
y),
s(
z))))
f(
0',
y,
z) →
max(
y,
z)
f(
x,
0',
z) →
max(
x,
z)
f(
x,
y,
0') →
max(
x,
y)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y),
s(
z)) →
f(
max(
s(
x),
max(
s(
y),
s(
z))),
p(
min(
s(
x),
max(
s(
y),
s(
z)))),
min(
s(
x),
min(
s(
y),
s(
z))))
f(
0',
y,
z) →
max(
y,
z)
f(
x,
0',
z) →
max(
x,
z)
f(
x,
y,
0') →
max(
x,
y)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y),
s(
z)) →
f(
max(
s(
x),
max(
s(
y),
s(
z))),
p(
min(
s(
x),
max(
s(
y),
s(
z)))),
min(
s(
x),
min(
s(
y),
s(
z))))
f(
0',
y,
z) →
max(
y,
z)
f(
x,
0',
z) →
max(
x,
z)
f(
x,
y,
0') →
max(
x,
y)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
(24) BOUNDS(n^1, INF)